壹作文_中小学生优秀满分作文大全

壹作文 > 實用文 > 總結 >

六年級數學知識點歸納總結

時間: 康華 總結

六年級數學知識點歸納總結篇1

分數除法是分數乘法的逆運算。

1.意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

2.計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。

3.應用題:已知一個數的幾分之幾是多少,求這個數用除法計算。

小技巧:

(1)先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

(2)在解答分數除法應用題時要找準單位“1”的量,而簡單的分數除法應用題就是要求單位“1”的量。

(3)分數除法應用題的數量關系式是:

單位“1”×分率=分率對應的量

在具體解答時,用方程做,設單位“1”的量為ⅹ。

(4)解答分數除法應用題時,可以借助于線段圖來分析數量關系。在畫線段圖時,先畫單位“1”的量。

可以發現:當應用題中單位“1”已經知道時,就用乘法解;當單位“1”不知道,要求單位“1”時,要用除法解或列方程解。

六年級數學知識點歸納總結篇2

1.意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

2.計算法則:

分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。

3.倒數:乘積是1的兩個數叫做互為倒數。

4.求倒數地方法

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

5.乘法解決問題

求一個數的幾分之幾是多少?(用乘法)

小技巧:已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數相乘。

巧找單位“1”的量:在含有分數(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。

求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙  少:(乙-甲)÷乙

六年級數學知識點歸納總結篇3

1.百分數與分數的區別

(1)意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數還可以表示兩數之間的倍數關系。

(2)應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。

(3)書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數并不都具有百分數的意義.

(4)百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。

2.百分數應用

(1)百分數一般有三種情況:

①100%以上,如:增長率、增產率等。

②100%以下,如:發芽率、成長率等。

③剛好100%,如:正確率,合格率等。

(2)日常應用

如:今天夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%。20%、10%讓人一目了然,既清楚又簡練。

六年級數學知識點歸納總結篇4

1.圓的概念:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

2.圓的組成:圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示。直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

注:圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

3.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

4.圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。

5.圓的面積公式:圓所占平面的大小叫做圓的面積。用字母S表示。

6.周長計算公式

(1)已知直徑:C=πd=2πr

(2)半圓的周長:1/2周長+直徑

7.面積計算公式:

(1)已知半徑:S=πr2

(2)已知直徑:S=π(d/2)2

(3)已知周長:S=π[c÷(2π)]2

六年級數學知識點歸納總結篇5

1.比和比例的意義

比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數有括號的含義!

2.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。用于化簡比。

3.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。

4.比和比例的聯系:

比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,成比例的兩個比的比值一定相等。

5.比和比例的區別

(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4這是比例。

(2)比的基本性質和比例的基本性質意義不同、應用不同。聯系:比例是由兩個相等的比組成。

6.正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。比例尺:圖上距離與實際距離的比叫做比例尺。

六年級數學知識點歸納總結篇6

扇形統計圖

一、扇形統計圖的意義:

用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間的關系。

也就是各部分數量占總數的百分比(因此也叫百分比圖)。

二、常用統計圖的優點:

1、條形統計圖:可以清楚的看出各種數量的多少。

2、折線統計圖:不僅可以看出各種數量的多少,還可以清晰看出數量的增減變化情況。

3、扇形統計圖:能夠清楚的反映出各部分數量同總數之間的關系。

三、扇形的面積大小:

在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關,圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數占圓周角度數的百分比。)

針對練習:

一、我國國土總面積是960萬平方千米。下面是我國地形分布情況統計圖,請根據統計圖回答問題。

1、我國山地面積占總面積的百分之幾?

2、各類地形中,什么地形面積?什么最小?

3、你還能得到哪些信息?

4、請算出各類地形的實際面積,填入下表。

地形種類山地丘陵高原盆地平原

面積(萬平方千米)

二、小軍家20__年11月支出情況統計如下圖。聰聰家20__年11月的總支出是3600元。請你回答問題。

1、這個月哪項出最多?支出了多少元?

2、文化教育支出了多少元?購買衣物支出了多少元?

3、購買衣物的支出比文化教育支出少百分之幾?

4、你還能提出什么問題?并解決你所提出的問題?

六年級數學知識點歸納總結篇7

一、分數除法的意義和分數除以整數

知識點一:分數除法的意義

整數除法的意義:已知兩個因數的積與其中一個因數,求另一個因數的運算。

知識點二:分數除以整數的計算方法

把一個數平均分成整數份,求其中的幾份就是求這個數的幾分之幾是多少。

分數除以整數(0除外)的計算方法:(1)用分子和整數相除的商做分子,分母不變。(2)分數除以整數,等于分數乘這個整數的倒數。

二、一個數除以分數

知識點一:一個數除以分數的計算方法

一個數除以分數,等于這個數乘分數的倒數。

知識點二:分數除法的統一計算法則

甲數除以乙數(0除外),等于甲數乘乙數的倒數。

知識點三:商與被除數的大小關系

一個數(0除外)除以小于1的數,商大于被除數,除以1,商等于被除數,除以大于1的數,商小于被除數。0除以任何數商都為0。

三、分數除法的混合運算

知識點一:分數除加、除減的運算順序

除加、除減混合運算,如果沒有括號,先算除法,后算加減。

知識點二:連除的計算方法

分數連除,可以分步轉化為乘法計算,也可以一次都轉化為乘法再計算,能約分的要約分。

知識點三:不含括號的分數混合運算的運算順序

在一個分數混合運算的算式里,如果只含有同一級運算,按照從左到右的順序計算;如果含有兩級運算,先算第二級運算,再算第一級運算。

知識點四:含有括號的分數混和運算的運算順序

在一個分數混合運算的算式里,如果既有小括號又有中括號,要先算小括號里面的,再算中括號里面的。

知識點五:整數的運算定律在分數混和運算中的運用

分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。被除數分子乘除數分母,被除數分母乘除數分子。

小學數學小數除法知識點

1、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。如:2。6÷1。3表示已知兩個因數的積2。6與其中的一個因數1。3,求另一個因數的運算。

小數除法的計算方法:

計算除數是整數的小數除法,按整數除法的計算方法去除,商的小數點要和被除數的小數點對齊,整數部分不夠除,商0,點上小數點,繼續除;如果有余數,要添0再除。

計算除數是小數的除法,先把除數轉化成整數,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位,位數不夠時,在被除數的末尾用0補足,然后按照除數是整數的小數除法進行計算。

2、取近似數的方法:

取近似數的方法有三種,①四舍五入法②進一法③去尾法

一般情況下,按要求取近似數時用四舍五入法,進一法、去尾法在解決實際問題的時候選擇應用。

取商的近似數時,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似數。沒有要求時,除不盡的一般保留兩位小數。

3、循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。依次不斷重復出現的數字,叫做這個循環小數的的循環節。

4、循環小數的表示方法:

一種是用省略號表示,要寫出兩個完整的循環節,后面標上省略號。如:0。3636…… 1。587587……

另一種是簡寫的方法:即只寫出一組循環節,然后在循環節的第一個數字和最后一個數上面點上圓點。如:12。

5、有限小數:小數部分的位數是有限的小數,叫做有限小數。

6、無限小數:小數部分的位數是無限的小數,叫做無限小數。

小學數學單位間進率知識點

1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1噸=1000千克1千克= 1000克= 1公斤= 1市斤

1公頃=10000平方米1畝=666。666平方米

1升=1立方分米=1000毫升1毫升=1立方厘米

六年級數學知識點歸納總結篇8

1、分數乘法:分數的分子與分子相乘,分母與分母相乘,能約分的要先約分。

2、分數乘法的計算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸

5、倒數:乘積是1的兩個數叫做互為倒數。

6、分數的倒數:找一個分數的倒數,例如3/4,把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子,則是4/3,3/4是4/3的倒數,也可以說4/3是3/4的倒數。

7、整數的倒數:找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。

8、小數的倒數:

普通算法:找一個小數的倒數,例如0。25,把0。25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1

9、用1計算法:也可以用1去除以這個數,例如0。25,1/0。25等于4,所以0。25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。

10、分數除法:分數除法是分數乘法的逆運算。

11、分數除法計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。

12、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。

13、分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。

14、比和比例:比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。

所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個。

15、比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。比的性質用于化簡比。

比表示兩個數相除;只有兩個項:比的前項和后項。

比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。

六年級數學知識點歸納總結篇9

1、圓的概念:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

2、圓的組成:圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示。直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一、d=2r或r=d/2。

注:圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

3、圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

4、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3、14。

5、圓的面積公式:圓所占平面的大小叫做圓的面積。用字母S表示。

6、周長計算公式

(1)已知直徑:C=πd=2πr

(2)半圓的周長:1/2周長+直徑

7、面積計算公式:

(1)已知半徑:S=πr2

(2)已知直徑:S=π(d/2)2

(3)已知周長:S=π[c÷(2π)]2

六年級數學知識點歸納總結篇10

一、課內重視聽講,課后及時復習

課堂上特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。

首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

二、適當多做題,養成良好的解題習慣

1、要想學好數學,多做題目是必須的,熟悉掌握各種題型的解題思路。

2、剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。

3、對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

4、在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。

有些同學平時做作業都會做,可一到考試就犯不是算錯數,就是看錯題等等低級錯誤。這是因為平時解題時隨便、粗心、大意等,所以小朋友平時要養成良好的解題習慣是非常重要的!

三、調整心態,正確對待考試

1、首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。

2、調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

3、考試前要做好準備,練練常規題,把自己的思路展開,在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要使自己的水平正常甚至超常發揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

六年級數學知識點歸納總結篇11

數學源于生活,寓于生活,用于生活。在小學數學教材里,編者更加有意識地要求學生從生活實際出發,把教材內容與生活實際有機結合起來,特別符合小學生的認知特點。能使他們體會到數學就在身邊,領悟到數學的魅力,感受到數學的樂趣。因此,我在課程改革當中力求能夠挖掘教材與生活的聯系。

一、利用生活經驗,引出數學問題用生活中的事物和生活中的事物進行對比

如:教學圓的認識時,可讓學生說說現實中看見過哪些物體的面是圓形的。學生會舉出很多,比如水桶底,汽車的輪子等。在教學體積單位時,講1立方厘米、1立方分米、1立方米究竟有多大?讓學生伸出食指,指出1立方厘米有如食指第一個指節大小。下一步,就讓學生用食指的第一指節來跟身邊的事物進行大小比較。然后再拿出一個粉筆盒告訴學生1立方分米有如粉筆盒大小。1立方米這個空間概念有多大呢?可讓學生都用手勢比劃一下,與此同時,馬上出示一個事先準備好的1立方米的正方體木架。于是學生明白棱長1米的正方體體積就是1立方米。為了讓學生實際體會1立方米的空間到底有多大,接著可提出1立方米的正方體里可裝進多少個同學?這樣,在同學們興奮驚奇的目光中,完成對1立方米這個體積單位的認識。

二、創設生活情境,感受數學問題把數學知識與生活情景有機結合起來,使數學知識成為學生所熟悉的情景,成為學生看得見、摸得著、聽得到的現實

如在講授《按比分配》時,可給學生創設了這樣一個情境:張某和李某合伙開一間小店。張某出資7萬元,李某出資3萬元。小店第一個月益利1萬元。可是在益利分配時,李某要求平均每人分5000元。你認為這樣分配合理嗎?通過學生圍繞合理與不合理的討論,讓他們自己發現數學問題。如在教學“小數的認識和計算”時,就可以模擬買賣貨物的情境,讓學生輪流做售貨員和顧客,開展活動。要求學生此次活動的錢數都要以“元”為單位進行交易。如一個學生拿5元錢買單價是1元2角的圓珠筆兩支,單價是5角的橡皮一塊,售票員應找回多少錢?1元2角等于多少元?5角等于多少元?應找回多少元?這一系列問題既形象直觀又訓練了學生的思維。

三、參與生活實踐,認識數學問題

在數學生活化的學習過程中,教師應引導學生領悟數學教學源于生活又用于生活的道理。有些數學知識完全可以讓學生在生活空間中學習,在生活空間中感知。如在教學長方形面積時,可讓學生到籃球場,量籃球場的長和寬,算出它的面積;讓學生量乒乓球臺算面積、量國旗算面積。又如在教學土地面積單位“公頃”時,可先讓學生到操場量教師先畫好的邊長為10米的正方形,讓學生算出它的面積。然后告訴學生100個這么大的正方形就是1公頃。再讓學生討論1公頃應該等于多少平方米?應該是怎樣的一個正方形?然后讓學生用測繩量出100米的邊長來,讓大家體會邊長100米的正方形的大小。在同學生激烈的爭論聲中結束了這堂課。這樣的教學安排,把學生在課堂中學到的知識,參與到生活實踐中;又從生活中彌補了課堂內學不到的知識。

六年級數學知識點歸納總結篇12

1. 位置的表示方法: A(列,行)如:A(3,4)表示A點在第三列第四行。

一般先看橫的數字,再看豎的數字,注意中間是逗號

2.分數乘法的意義:一個數×分數

分數×一個數

3.乘積是1的兩個數互為倒數 1的倒數是1 0沒有倒數

4.除以一個不等于0的數,等于乘這個數的倒數

5.兩個數相除又叫做兩個數的比。比值通常用分數表示,也可以用分數或整數

6.比的基本性質:比的前項和后項同時乘或除以相同的數(0除外),比值不變

7.圓的周長與它的直徑的比值叫做圓周率,用兀來表示,兀≈3.14

8.有關圓的公式:

C= 兀d = 2兀r S =兀r 2

d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

圓環的面積S = 兀 R 2-兀 r 2

9.原價×折扣=現價 營業額×稅率=應納稅額 本金×利率×時間=利息

10.條形統計圖:可以清楚的看出數據的多少

折線統計圖:可以清楚的看出數據的增減變化趨勢

扇形統計圖:可以清楚的看出各部分同總數之間的關系

六年級數學下冊知識點

一、比例

1、比例的基本性質是在比例里兩內項積等于兩外項積。

2、用x 和 y表示兩種相關聯的量,用k表示它們的比值(一定),那么正比例關系表示為:

Y : x = k(一定)

3、用x 和 y表示兩種相關聯的量,用k表示它們的乘積(一定),那么反比例關系表示為:

Xy=k(一定)

二、數與代數(復習)

1、自然數和0都是整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示。0也是自然數。

3、計數單位:一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位:計數單位按照一定的順序排列起來,它們所占的位置叫做數位。

5、數的整除:整數a除以整數b(b ≠ 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。

6:倍數和因數:如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的因數。倍數和因數是相互依存的。 因為35能被7整除,所以35是7的倍數,7是35的因數。

7、一個數的因數的個數是有限的,其中最小的因數是1,的因數是它本身。例如:10的因數有1、2、5、10,其中最小的因數是1,的因數是10。

8、一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、…其中最小的倍數是3 ,沒有的倍數。

9、能被2整除的數叫做偶數。 不能被2整除的數叫做奇數。 0也是偶數。自然數按能否被2 整除的特征可分為奇數和偶數。

10、一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。

12、1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其因數的個數的不同分類,可分為質數、合數和1。

13、每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。

14、幾個數公有的因數,叫做這幾個數的公因數。其中的一個,叫做這幾個數的公因數,例如12的因數有1、2、3、4、6、12;18的因數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數,6是它們的公因數。

15、公因數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:

16、如果較小數是較大數的因數,那么較小數就是這兩個數的公因數。

17、如果兩個數是互質數,它們的公因數就是1。

18、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……

3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。

19、如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。

20、幾個數的公因數的個數是有限的,而幾個數的公倍數的個數是無限的。

(二)小數

1、小數的意義 :把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。

一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

2、一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數是整數部分,小數點右邊的數叫做小數部分。

3、在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。

(三)分數

1、分數的意義 :把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。

2、把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。

3、分數的分類

真分數:分子比分母小的分數叫做真分數。真分數小于1。 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。

4、約分:把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。

5、分子分母是互質數的`分數叫做最簡分數。

6、把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

(四) 約分和通分

1、約分的方法:用分子和分母的公因數(1除外)去除分子、分母;通常要除到得出最簡分數為止。

2、通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。

三 性質和規律

1、商不變的規律 :商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。

2、小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。

3、小數點位置的移動引起小數大小的變化

(1)小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……

(2)小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……

(3)小數點向左移或者向右移位數不夠時,要用“0"補足位。

(五)分數的基本性質

分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。

(六)分數與除法的關系

1. 被除數÷除數= 被除數/除數

2. 因為零不能作除數,所以分數的分母不能為零。

3. 被除數 相當于分子,除數相當于分母。

四 運算的意義

(一)整數四則運算

加數+加數=和

一個加數=和-另一個加數

被減數-減數=差

被減數=減數+差

減數=被減數-差

一個因數× 一個因數 =積

一個因數=積÷另一個因數

被除數÷除數=商

除數=被除數÷商

被除數=商×除數

(二)運算定律

1. 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。

2. 加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。

3. 乘法交換律:

兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。

4. 乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。

6. 減法的性質:

從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。

(三)運算法則

1. 整數加法計算法則:

相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

2. 整數減法計算法則:

相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。

3. 整數乘法計算法則:

先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。

4. 整數除法計算法則:

先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。

5. 小數乘法法則:

先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。

6. 除數是整數的小數除法計算法則:

先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續除。

7. 除數是小數的除法計算法則:

先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。

8. 同分母分數加減法計算方法:

同分母分數相加減,只把分子相加減,分母不變。

9. 異分母分數加減法計算方法:

先通分,然后按照同分母分數加減法的的法則進行計算。

10. 帶分數加減法的計算方法: 整數部分和分數部分分別相加減,再把所得的數合并起來。

(一)小數乘除法的意義及法則

1. 小數乘法意義:

小數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。例:3.5×4表示4個3.5相加是多少。或表示3.5的4倍是多少。

一個數乘小數的意義與整數乘法的意義不同,是求這個數的十分之幾,百分之幾,千分之幾……。例:25×0.17,表示25的百分之十七是多少。

2. 小數除法的意義

小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算。例: 表示已知兩個因數的積是0.75和其中一個因數0.5,求另一個因數是多少。或表示0.75是0.5的多少倍。

(二)小數乘除法的計算法則

1. 小數乘法法則:

(1)先按照整數乘法的法則計算;

(2)看因數中一共有幾位小數,就從積的右邊數出幾位,點上小數點。

2. 小數除法法則:

(1)先按照整數除法的法則去除;

(2)商的小數點和被除數的小數點對齊;

(3)除到被除數的末尾仍有余數,就在余數后面添0再繼續除。

二、 度量衡

長度單位換算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面積單位換算

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

體(容)積單位換算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量單位換算

1噸=1000 千克

1千克=1000克

1千克=1公斤

人民幣單位換算

1元=10角

1角=10分

1元=100分

時間單位換算

1世紀=100年 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 閏年2月29天

平年全年365天, 閏年全年366天

1日=24小時 1時=60分

1分=60秒 1時=3600秒

代數初步知識

一、用字母表示數

1 用字母表示數的意義和作用

2用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式

(1)常見的數量關系

路程用s表示,速度v用表示,時間用t表示,三者之間的關系:

s=vt v=s/t t=s/v

總價用a表示,單價用b表示,數量用c表示,三者之間的關系:

a=bc b=a/c c=a/b

(2)運算定律和性質

加法交換律:a+b=b+a

加法結合律:(a+b)+c=a+(b+c)

乘法交換律:ab=ba

乘法結合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

減法的性質:a-(b+c) =a-b-c

(3)用字母表示幾何形體的公式

長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。 c=2(a+b) s=ab

正方形的邊長a用表示,周長用c表示,面積用s表示。 c=4a s=a2

平行四邊形的底a用表示,高用h表示,面積用s表示。 s=ah

三角形的底用a表示,高用h表示,面積用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2

小學數學圖形計算公式

1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a

3 、長方形

C周長 S面積 a邊長

周長=(長+寬)×2

C=2(a+b)

面積=長×寬

S=ab

4 、長方體

V:體積 s:面積 a:長 b: 寬 h:高

(1)表面積(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5 三角形

s面積 a底 h高

面積=底×高÷2

s=ah÷2

三角形高=面積 ×2÷底

三角形底=面積 ×2÷高

6 平行四邊形

s面積 a底 h高

面積=底×高

s=ah

7 梯形

s面積 a上底 b下底 h高

面積=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圓形

S面積 C周長 ∏ d=直徑 r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9 圓柱體

v:體積 h:高 s;底面積 r:底面半徑 c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10 圓錐體

v:體積 h:高 s;底面積 r:底面半徑

體積=底面積×高÷3

11、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2

12、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr

13、圓的面積=圓周率×半徑×半徑

(二)分數和百分數的應用

1、分數加減法應用題:分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本相同,所不同的只是在已知數或未知數中含有分數。

2、分數乘法應用題:是指已知一個數,求它的幾分之幾是多少的應用題。

特征:已知單位“1”的量和分率,求與分率所對應的實際數量。

解題關鍵:準確判斷單位“1”的量。找準要求問題所對應的分率,然后根據一個數乘分數的意義正確列式。

3、分數除法應用題:

(1)求一個數是另一個數的幾分之幾(或百分之幾)是多少。

特征:已知一個數和另一個數,求一個數是另一個數的幾分之幾或百分之幾。“一個數”是比較量,“另一個數”是標準量。求分率或百分率,也就是求他們的倍數關系。

解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數。

甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。

甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式:(甲數減乙數)/乙數或(甲數減乙數)/甲數 。

(2)已知一個數的幾分之幾(或百分之幾 )是多少 ,求這個數。

特征:已知一個實際數量和它相對應的分率,求單位“1”的量。

解題關鍵:根據分數乘法的意義列方程,或者根據分數除法的意義列算式,但必須找準和分率相對應的已知實際數量。

4、百分率:

發芽率=發芽種子數/試驗種子數×100%

小麥的出粉率= 面粉的重量/小麥的重量×100%

產品的合格率=合格的產品數/產品總數×100%

職工的出勤率=實際出勤人數/應出勤人數×100%

5、工程問題:是分數應用題的特例,它與整數的工作問題有著密切的聯系。它是探討工作總量、工作效率和工作時間三個數量之間相互關系的一種應用題。

解題關鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數,然后根據題目的具體情況,靈活運用公式。

數量關系:工作總量=工作效率×工作時間

工作效率=工作總量÷工作時間

工作時間=工作總量÷工作效率

工作總量÷工作效率和=合作時間

數學六年級學習方法

首先:課前復習。就是上課前花兩三分鐘把書本本節課要學的內容看一遍。僅僅是看一遍,過一遍。這樣上課老師講自己不但可以跟上老師節奏還可以再次鞏固。其余不要干其他多余的事。

其次:上課時候一定要專心聽講,如果覺得老師這里講得都懂了的話可以自己翻書看后面的內容。做習題的時候一定要一道一道往過做,不要越題做。因為對于課本來說這些都是基礎,只有基礎完全掌握后才能做難題。上課過程中第一次接觸到的知識點概念等,一定一定要當堂背過。不然以后很難背過,不要妄想考前抱佛教再背

另外要把筆記記準確,知道自己需要記什么不需要記什么,憋一個勁地往書上搬。字不要求整齊,自己能看懂就行。課本資料書上有例題,多看多記方法。先看課本基礎,在看資料書上著重的。例題的方法一定一定要理解,不要去背!接著下課再看筆記,只是略微鞏固記住。

數學六年級學習技巧

養成良好的課前和課后學習習慣:在當前高中數學學習中,培養正確的學習習慣是一項重要的學習技能。雖然有一種刻板印象的猜疑,但在高中數學學習真的是反復嘗試和錯誤的。學生們不得不預習課本。我準備的數學教科書不是簡單的閱讀,而是一個例子,至少十分鐘的思考。在使用前不能通過學習知識解決問題的情況下,可以在教學內容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時,在課堂上安排筆記也是必要的。在高中數學研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內容的查詢。

六年級數學知識點歸納總結篇13

角:

(1)角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。

這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

(2)角的動態定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。

所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

角的符號:∠

角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。

在動態定義中,取決于旋轉的方向與角度。

角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。

以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

(1)銳角:大于0°,小于90°的角叫做銳角。

(2)直角:等于90°的角叫做直角。

(3)鈍角:大于90°而小于180°的角叫做鈍角。

乘法:

乘法是指一個數或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。

乘法算式中各數的名稱:

“×”是乘號,乘號前面和后面的數叫做因數,“=”是等于號,等于號后面的數叫做積。

例:10(因數)×(乘號)200(因數)=(等于號)20__(積)

平行:

在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。

垂直:

兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

平行四邊形:

在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。

梯形:

梯形是指一組對邊平行而另一組對邊不平行的四邊形。

平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。

除法:

除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。

六年級數學知識點歸納總結篇14

1、上、下

(1)在具體場景中理解上、下的含義及其相對性。

(2)能比較準確地確定物體上下的方位,會用上、下描述物體的相對位置。

(3)培養學生初步的空間觀念。

2、前、后

(1)在具體場景中理解前、后、最×的含義,以及前后的相對性。

(2)能比較準確地確定物體前后的方位,會用前、后、最前、最后描述物體的相對位置。

(3)培養學生初步的空間觀念。

加減法

(一)本單元知識網絡:

(二)各課知識點:

有幾枝鉛筆(加法的認識)

知識點:

1、初步了解加法的含義,會讀、寫加法算式,感悟把兩個數合并在一起求一共是多少,用加法計算;

2、初步嘗試選擇恰當的方法進行5以內的加法口算。

3、第一次出現了圖形應用題,要讓學生學會看圖形應用型題目,理解題目的意思。

有幾輛車(初步認識加法的交換律)

3、左、右(1)在具體場景中理解左、右的含義及其相對性。

(2)能比較準確地確定物體左右的方位,會用左、右描述物體的位置。

(3)培養學生初步的空間觀念。

4、位置

(1)明確“橫為行、豎為列”,并知道“第幾行第幾個”、“第幾組第幾個”的含義。

(2)在具體情境中,會用2個數據(2個維度)描述人或物體的具體位置。

(3)在具體情境中,能依據2個維度的數據找到人或物體的具體位置。

六年級數學知識點歸納總結篇15

通過欣賞和設計圖案的活動,進一步認識正方形、長方形、三角形和圓。

小小運動會

1、應用100以內的進位加法與退位減法的計算方法進行正確的計算。

2、經歷與他人交流各自算法的過程,體會算法多樣化。

3、體會長方形、正方形、三角形和圓在生活中的普遍存在。

4、能利用圖形設計美麗的圖案。

六年級數學知識點歸納總結篇16

購物

【知識框架】

購物

1、買文具---(小面額的人民幣)

2、買衣服---(大面額的人民幣)

3、小小商店---(進行有關錢款的簡單計算)

【知識點】

買文具(小面額的人民幣)

1、認識各種小面額的人民幣。

2、體會小面額人民幣之間的換算關系。

3、從實際問題中理解“付出的錢、應付的錢、應找回的錢”三者之間的關系。

4、在購物情景中進行有關錢款的簡單計算。

買衣服(大面額的人民幣)

1、讓學生在活動中認識大面額的人民幣,能從相同點和不同點上辨認。

2、會計算大面額人民幣之間的換算。

3、在購物活動中體會大面額人民幣的作用,運用人民幣的兌換知識,初步掌握付錢的方法。

小小商店(進行有關錢款的簡單計算)

1.在購物情景中會進行有關錢款的簡單計算。

2.通過購物中的活動,了解付費的方式是多樣化的。

3.通過購物的活動,鞏固復習100以內的加減法計算。

4.購物中能解決一些簡單的實際問題。

124141 主站蜘蛛池模板: 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | PSI渗透压仪,TPS酸度计,美国CHAI PCR仪,渗透压仪厂家_价格,微生物快速检测仪-华泰和合(北京)商贸有限公司 | 定时排水阀/排气阀-仪表三通旋塞阀-直角式脉冲电磁阀-永嘉良科阀门有限公司 | 筒瓦厂家-仿古瓦-寺庙-古建琉璃瓦-宜兴市古典园林建筑陶瓷厂有限公司 | 消泡剂-水处理消泡剂-涂料消泡剂-切削液消泡剂价格-东莞德丰消泡剂厂家 | 针焰试验仪,灼热丝试验仪,漏电起痕试验仪,水平垂直燃烧试验仪 - 苏州亚诺天下仪器有限公司 | 水质监测站_水质在线分析仪_水质自动监测系统_多参数水质在线监测仪_水质传感器-山东万象环境科技有限公司 | 热熔胶网膜|pes热熔网膜价格|eva热熔胶膜|热熔胶膜|tpu热熔胶膜厂家-苏州惠洋胶粘制品有限公司 | 上海瑶恒实业有限公司|消防泵泵|离心泵|官网 | 【中联邦】增稠剂_增稠粉_水性增稠剂_涂料增稠剂_工业增稠剂生产厂家 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 过滤器_自清洗过滤器_气体过滤器_苏州华凯过滤技术有限公司 | 博博会2021_中国博物馆及相关产品与技术博览会【博博会】 | 西装定制/做厂家/公司_西装订做/制价格/费用-北京圣达信西装 | 最新范文网_实用的精品范文美文网 | 杭州火蝠电商_京东代运营_拼多多全托管代运营【天猫代运营】 | 不锈钢散热器,冷却翅片管散热器厂家-无锡市烨晟化工装备科技有限公司 | 哲力实业_专注汽车涂料汽车漆研发生产_汽车漆|修补油漆品牌厂家 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 标准品网_标准品信息网_【中检计量】 | 智能家居全屋智能系统多少钱一套-小米全套价格、装修方案 | 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | 武汉印刷厂-不干胶标签印刷厂-武汉不干胶印刷-武汉标签印刷厂-武汉标签制作 - 善进特种标签印刷厂 | 带锯机|木工带锯机圆木推台锯|跑车带锯机|河北茂业机械制造有限公司| | 致胜管家软件服务【在线免费体验】 | 太阳能发电系统-太阳能逆变器,控制器-河北沐天太阳能科技首页 | 影合社-影视人的内容合作平台| 隐形纱窗|防护纱窗|金刚网防盗纱窗|韦柏纱窗|上海青木装潢制品有限公司|纱窗国标起草单位 | 定制/定做冲锋衣厂家/公司-订做/订制冲锋衣价格/费用-北京圣达信 | 二手注塑机回收_旧注塑机回收_二手注塑机买卖 - 大鑫二手注塑机 二手光谱仪维修-德国OBLF光谱仪|进口斯派克光谱仪-热电ARL光谱仪-意大利GNR光谱仪-永晖检测 | 生产自动包装秤_颗粒包装秤_肥料包装秤等包装机械-郑州鑫晟重工科技有限公司 | 武汉森源蓝天环境科技工程有限公司-为环境污染治理提供协同解决方案 | 全自动变压器变比组别测试仪-手持式直流电阻测试仪-上海来扬电气 | 酸度计_PH计_特斯拉计-西安云仪 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn | 莱州网络公司|莱州网站建设|莱州网站优化|莱州阿里巴巴-莱州唯佳网络科技有限公司 | 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 北京三友信电子科技有限公司-ETC高速自动栏杆机|ETC机柜|激光车辆轮廓测量仪|嵌入式车道控制器 | 东莞动力锂电池保护板_BMS智能软件保护板_锂电池主动均衡保护板-东莞市倡芯电子科技有限公司 | sfp光模块,高速万兆光模块工厂-性价比更高的光纤模块制造商-武汉恒泰通 | 钢化玻璃膜|手机钢化膜|钢化膜厂家|手机保护膜-【东莞市大象电子科技有限公司】 | 金属清洗剂,防锈油,切削液,磨削液-青岛朗力防锈材料有限公司 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 |