壹作文_中小学生优秀满分作文大全

壹作文 > 實用文 > 總結 >

九年級數學知識點歸納總結

時間: 康華 總結

九年級數學知識點歸納總結精選篇1

單項式與多項式

僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。

單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。

當一個單項式的系數是1或—1時,“1”通常省略不寫。

一個單項式中,所有字母的指數的和叫做這個單項式的次數。

如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。

1、多項式

有有限個單項式的代數和組成的式子,叫做多項式。

多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。

單項式可以看作是多項式的特例

把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合并同類項后,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。

2、多項式的值

任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。

3、多項式的恒等

對于兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

性質1如果fx==gx,那么,對于任一個數值a,都有fa=ga。

性質2如果fx==gx,那么,這兩個多項式的個同類項系數就一定對應相等。

4、一元多項式的根

一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的根。

多項式的加、減法,乘法

1、多項式的加、減法

2、多項式的乘法

單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個因式。

3、多項式的乘法

多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

兩個數的和與這兩個數的差的積等于這兩個數的平方差。

九年級數學知識點歸納總結精選篇2

一、重要概念

1.數的分類及概念數系表:

說明:分類的原則:1)相稱(不重、不漏) 2)有標準

2.非負數:正實數與零的統稱。(表為:x0)

性質:若干個非負數的和為0,則每個非負數均為0。

3.倒數:

①定義及表示法

②性質:A.a1/a(a1);B.1/a中,aa1時,1/aD.積為1。

4.相反數:

①定義及表示法

②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:

①定義(三要素)

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數-自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:

①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│0,符號││是非負數的標志;

③數a的絕對值只有一個;

④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。

二、實數的運算

1.運算法則(加、減、乘、除、乘方、開方)

2.運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]

分配律)

3.運算順序:A.高級運算到低級運算;B.(同級運算)從左

到右(如5 C.(有括號時)由小到中到大。

三、應用舉例(略)

附:典型例題

1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.

2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。

九年級數學知識點歸納總結精選篇3

三角形的外心定義:

外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。

三角形的外心的性質:

1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;

2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內接三角形卻有無數個,這些三角形的外心重合;

3、銳角三角形的外心在三角形內;

鈍角三角形的外心在三角形外;

直角三角形的外心與斜邊的中點重合。

在△ABC中

4、OA=OB=OC=R

5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

6、S△ABC=abc/4R

九年級數學知識點歸納總結精選篇4

1、概念:

把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。

旋轉三要素:旋轉中心、旋轉方面、旋轉角。

2、旋轉的性質:

(1)旋轉前后的兩個圖形是全等形;

(2)兩個對應點到旋轉中心的距離相等。

(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角。

3、中心對稱:

把一個圖形繞著某一個點旋轉180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。

這兩個圖形中的對應點叫做關于中心的對稱點。

4、中心對稱的性質:

(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。

(2)關于中心對稱的兩個圖形是全等圖形。

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉180,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

6、坐標系中的中心對稱

兩個點關于原點對稱時,它們的坐標符號相反,

即點P(x,y)關于原點O的對稱點P(―x,―y)。

九年級數學知識點歸納總結精選篇5

1.不在同一直線上的三點確定一個圓。

2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點的距離等于定長的點的集合

5.圓的內部可以看作是圓心的距離小于半徑的點的集合

6.圓的外部可以看作是圓心的距離大于半徑的點的集合

7.同圓或等圓的半徑相等

8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

12.①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的性質定理圓的切線垂直于經過切點的半徑

15.推論1經過圓心且垂直于切線的直線必經過切點

16.推論2經過切點且垂直于切線的直線必經過圓心

17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等外角等于內對角

19.如果兩個圓相切,那么切點一定在連心線上

20.①兩圓外離d>R+r ②兩圓外切d=R+r

③.兩圓相交R-rr

④.兩圓內切d=R-rR>r ⑤兩圓內含dr

21.定理相交兩圓的連心線垂直平分兩圓的公共弦

22.定理把圓分成nn≥3:

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24.正n邊形的每個內角都等于n-2×180°/n

25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4

29.弧長計算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內公切線長= d-R-r外公切線長= d-R+r

32.定理一條弧所對的圓周角等于它所對的圓心角的一半

33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑

35.弧長公式l=ar a是圓心角的弧度數r >0扇形面積公式s=1/2lr

初三數學復習方法

一、回歸課本,夯實基礎,做好預習。

數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,提高學習效率。

二、提高課堂聽課效率,多動腦,勤動手

初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

三、建立錯題本,查漏補缺

初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業時,在錯題旁邊要寫明做錯的原因。

初三數學學習建議

培養良好的學習習慣

1制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩打穩扎,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨練學習意志。

2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

3專心上課。“學然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環節。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。

4及時復習。這是高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。

5獨立作業。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業練習使學生對所學知識由“會”到“熟”。

6解決疑難。這是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并經常把容易錯的地方拿來復習強化,作適當的重復性練習,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。

7系統小結。這是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由“活”到“悟”。

8課外學習。課外學習是課內學習的補充和繼續,包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展學生的興趣愛好,培養獨立學習和工作的能力,激發求知欲與學習熱情。

九年級數學知識點歸納總結精選篇6

不等式的概念

1、不等式:用不等號表示不等關系的式子,叫做不等式。

2、不等式的解集:對于一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。

3、對于一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

4、求不等式的解集的過程,叫做解不等式。

5、用數軸表示不等式的方法。

不等式基本性質

1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。

2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。

3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。

4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。

一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數化為1。

一元一次不等式組

1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

3、求不等式組的解集的過程,叫做解不等式組。

4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

5、一元一次不等式組的解法

1分別求出不等式組中各個不等式的解集。

2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

6、不等式與不等式組

不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的.兩邊都乘以或除以同一個負數,不等號方向相反。

7、不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

九年級數學知識點歸納總結精選篇7

全套教科書包含了課程標準(實驗稿)規定的“數與代數”“空間與圖形”“統計與概率”“實踐與綜合應用”四個領域的內容,在體系結構的設計上力求反映這些內容之間的聯系與綜合,使它們形成一個有機的整體。

九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標準》的四個領域。本冊書內容分析如下:

第21章二次根式

學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。“二次根式”一章就來認識這種式子,探索它的性質,掌握它的運算。

在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:

注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

并運用它們進行二次根式的化簡。

“二次根式的加減”一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節內容。

第22章一元二次方程

學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程。“一元二次方程”一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。

本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,

“22.2降次——解一元二次方程”一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

(1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對于沒有實數根的一元二次方程,學了“公式法”以后,學生對這個內容會有進一步的理解。

(2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。

(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。

“22.3實際問題與一元二次方程”一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。

第23章旋轉

學生已經認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。“旋轉”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。

“23.1旋轉”一節首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。

“23.2中心對稱”一節首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。

“23.3課題學習圖案設計”一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。

第24章圓

圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

“24.1圓”一節首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。

“24.2與圓有關的位置關系”一節首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。

“24.3正多邊形和圓”一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。

“24.4弧長和扇形面積”一節首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。

第25章概率初步

將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

“25.1概率”一節首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。

“25.2用列舉法求概率”一節首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

“25.3利用頻率估計概率”一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

“25.4課題學習鍵盤上字母的排列規律”一節讓學生通過這一課題的研究體會概率的廣泛應用。

九年級數學知識點歸納總結精選篇8

一、重要概念

1.數的分類及概念數系表:

說明:分類的原則:

1)相稱(不重、不漏)

2)有標準

2.非負數:正實數與零的統稱。(表為:x0)

性質:若干個非負數的和為0,則每個非負數均為0。

3.倒數:

①定義及表示法

②性質:A.a1/a(a1);B.1/a中,aa1時,1/aD.積為1。

4.相反數:

①定義及表示法

②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。

5.數軸:

①定義(三要素)

②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。

6.奇數、偶數、質數、合數(正整數-自然數)

定義及表示:

奇數:2n-1

偶數:2n(n為自然數)

7.絕對值:

①定義(兩種):

代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

②│a│0,符號││是非負數的標志;

③數a的絕對值只有一個;

④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。

二、實數的運算

1.運算法則(加、減、乘、除、乘方、開方)

2.運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]

分配律)

3.運算順序:A.高級運算到低級運算;B.(同級運算)從左

到右(如5 C.(有括號時)由小到中到大。

三、應用舉例(略)

附:典型例題

1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.

2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。

九年級數學知識點歸納總結精選篇9

1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;

a2aa0。

2二次根式的乘除:ababa0,b0;

aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。

4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。

2一元二次方程的解法

配方法:將方程的一邊配成完全平方式,然后兩邊開方;

bb24ac公式法:x2a因式分解法:左邊是兩個因式的乘積,右邊為零。

3一元二次方程在實際問題中的應用

4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉

1圖形的旋轉旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;

對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關于原點對稱的點的坐標第四章圓

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2垂直于弦的直徑

圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。

3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

5點和圓的位置關系點在dr點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。

三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。

6圓和圓的位置關系

外離d>R+r外切d=R+r相交R-r第五章概率初步

1概率意義:在大量重復試驗中,事件A發生的頻率某個常數p附近,則常數p叫做事件A的概率。

2用列舉法求概率

一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=mnm穩定在n3用頻率去估計概率

九年級數學知識點歸納總結精選篇10

初三數學知識點第一章二次根式

1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;aaa0;

2a2aa0。

2二次根式的乘除:ababa0,b0;

aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。

4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。

2一元二次方程的解法

配方法:將方程的一邊配成完全平方式,然后兩邊開方;

bb24ac公式法:x

2a因式分解法:左邊是兩個因式的乘積,右邊為零。3一元二次方程在實際問題中的應用

4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉1圖形的旋轉

旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;

對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖

形重合,則兩個圖形關于這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度后得到的

圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關于原點對稱的點的坐標第四章圓

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑

圓是軸對稱圖形,任何一條直徑所在的直線都是它

的對稱軸;

垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所

baca對的弦也相等。

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等

于這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角

所對的弦是直徑。

5點和圓的位置關系點在

dr

點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。

三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,

圓心是三角形的三條角平分線的交點,為三角形的內心。

7圓和圓的位置關系

外離d>R+r外切d=R+r相交R-r第五章概率初步

1概率意義:在大量重復試驗中,事件A發生的頻率某個常數p附近,則常數p叫做事件A的概率。

2用列舉法求概率

一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=

mnm穩定在n3用頻率去估計概率

九年級數學知識點歸納總結精選篇11

1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2、垂直于弦的直徑

圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;

平分弦的直徑垂直弦,并且平分弦所對的兩條弧。

3、弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。

4、圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

5、點和圓的位置關系

點在圓外

點在圓上 d=r

點在圓內 d

定理:不在同一條直線上的三個點確定一個圓。

三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。

6、直線和圓的位置關系

相交 d

相切 d=r

相離 d>r

切線的性質定理:圓的切線垂直于過切點的半徑;

切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;

切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。

三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。

7、圓和圓的位置關系

外離 d>R+r

外切 d=R+r

相交 R-r

內切 d=R-r

內含 d

8、正多邊形和圓

正多邊形的中心:外接圓的圓心

正多邊形的半徑:外接圓的半徑

正多邊形的中心角:沒邊所對的圓心角

正多邊形的邊心距:中心到一邊的距離

9、弧長和扇形面積

弧長

扇形面積:

10、圓錐的側面積和全面積

側面積:

全面積

11、(附加)相交弦定理、切割線定理

第五章概率初步

1 概率意義:在大量重復試驗中,事件A發生的頻率 穩定在某個常數p附近,則常數p叫做事件A的概率。

2 用列舉法求概率

一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=

3 用頻率去估計概率

九年級數學知識點歸納總結精選篇12

I.定義與定義表達式

一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

a,b,c為常數,a≠0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大,則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點A(x ,0)和 B(x,0)的拋物線]

注:在3種形式的互相轉化中,有如下關系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

九年級數學知識點歸納總結精選篇13

直線、相交線、平行線

1、線段、射線、直線三者的區別與聯系

從圖形、表示法、界限、端點個數、基本性質等方面加以分析。

2、線段的中點及表示

3、直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大于第三邊)

4、兩點間的距離(三個距離:點—點;點—線;線—線)

5、角(平角、周角、直角、銳角、鈍角)

6、互為余角、互為補角及表示方法

7、角的平分線及其表示

8、垂線及基本性質(利用它證明直角三角形中斜邊大于直角邊)

9、對頂角及性質

10、平行線及判定與性質(互逆)(二者的區別與聯系)

11、常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

九年級數學知識點歸納總結精選篇14

1、圖形的相似

相似多邊形的對應邊的比值相等,對應角相等;

兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;

相似比:相似多邊形對應邊的比值。

2、相似三角形

判定:

平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;

如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;

如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;

如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。

3相似三角形的周長和面積

相似三角形(多邊形)的周長的比等于相似比;

相似三角形(多邊形)的面積的比等于相似比的平方。

4位似

位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。

九年級數學知識點歸納總結精選篇15

鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

平行線:在同一平面內,不相交的兩條直線叫做平行線。

同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

命題:判斷一件事情的語句叫命題。

平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

124147 主站蜘蛛池模板: 今日娱乐圈——影视剧集_八卦娱乐_明星八卦_最新娱乐八卦新闻 | 上海三信|ph计|酸度计|电导率仪-艾科仪器 | 婚博会2024时间表_婚博会门票领取_婚博会地址-婚博会官网 | 中开泵,中开泵厂家,双吸中开泵-山东博二泵业有限公司 | 砂磨机_立式纳米砂磨机_实验室砂磨机-广州儒佳化工设备厂家 | 蓝莓施肥机,智能施肥机,自动施肥机,水肥一体化项目,水肥一体机厂家,小型施肥机,圣大节水,滴灌施工方案,山东圣大节水科技有限公司官网17864474793 | 卷筒电缆-拖链电缆-特种柔性扁平电缆定制厂家「上海缆胜」 | _网名词典_网名大全_qq网名_情侣网名_个性网名 | 顺景erp系统_erp软件_erp软件系统_企业erp管理系统-广东顺景软件科技有限公司 | 上海皓越真空设备有限公司官网-真空炉-真空热压烧结炉-sps放电等离子烧结炉 | 【黄页88网】-B2B电子商务平台,b2b平台免费发布信息网 | 木材烘干机,木炭烘干机,纸管/佛香烘干设备-河南蓝天机械制造有限公司 | 合肥礼品公司-合肥礼品定制-商务礼品定制公司-安徽柏榽商贸有限公司 | 智慧物联网行业一站式解决方案提供商-北京东成基业 | 砂磨机_立式纳米砂磨机_实验室砂磨机-广州儒佳化工设备厂家 | 湖南档案密集架,智能,物证,移动,价格-湖南档案密集架厂家 | 蓄电池回收,ups电池后备电源回收,铅酸蓄电池回收,机房电源回收-广州益夫铅酸电池回收公司 | 淄博不锈钢,淄博不锈钢管,淄博不锈钢板-山东振远合金科技有限公司 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 高铝矾土熟料_细粉_骨料_消失模_铸造用铝矾土_铝酸钙粉—嵩峰厂家 | 校园文化空间设计-数字化|中医文化空间设计-党建|法治廉政主题文化空间施工-山东锐尚文化传播公司 | 中央空调维修、中央空调保养、螺杆压缩机维修-苏州东菱空调 | 特种阀门-调节阀门-高温熔盐阀-镍合金截止阀-钛阀门-高温阀门-高性能蝶阀-蒙乃尔合金阀门-福建捷斯特阀门制造有限公司 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 「安徽双凯」自动售货机-无人售货机-成人用品-自动饮料食品零食售货机 | 杭州月嫂技术培训服务公司-催乳师培训中心报名费用-产后康复师培训机构-杭州优贝姆健康管理有限公司 | 航空连接器,航空插头,航空插座,航空接插件,航插_深圳鸿万科 | 鲸鱼视觉 -数字展厅多媒体互动展示制作公司 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | Dataforth隔离信号调理模块-信号放大模块-加速度振动传感器-北京康泰电子有限公司 | 对照品_中药对照品_标准品_对照药材_「格利普」高纯中药标准品厂家-成都格利普生物科技有限公司 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 | 一级建造师培训_一建培训机构_中建云筑建造师培训网校 | 国资灵活用工平台_全国灵活用工平台前十名-灵活用工结算小帮手 | 小型UV打印机-UV平板打印机-大型uv打印机-UV打印机源头厂家 |松普集团 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 大型果蔬切片机-水果冬瓜削皮机-洗菜机切菜机-肇庆市凤翔餐饮设备有限公司 | 光泽度计_测量显微镜_苏州压力仪_苏州扭力板手维修-苏州日升精密仪器有限公司 | 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 紧急泄压人孔_防爆阻火器_阻火呼吸阀[河北宏泽石化] |